3 resultados para quality measurement

em eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential of near infra-red (NIR) spectroscopy for non-invasive measurement of fruit quality of pineapple (Ananas comosus var. Smooth Cayenne) and mango (Magnifera indica var. Kensington) fruit was assessed. A remote reflectance fibre optic probe, placed in contact with the fruit skin surface in a light-proof box, was used to deliver monochromatic light to the fruit, and to collect NIR reflectance spectra (760–2500 nm). The probe illuminated and collected reflected radiation from an area of about 16 cm2. The NIR spectral attributes were correlated with pineapple juice Brix and with mango flesh dry matter (DM) measured from fruit flesh directly underlying the scanned area. The highest correlations for both fruit were found using the second derivative of the spectra (d2 log 1/R) and an additive calibration equation. Multiple linear regression (MLR) on pineapple fruit spectra (n = 85) gave a calibration equation using d2 log 1/R at wavelengths of 866, 760, 1232 and 832 nm with a multiple coefficient of determination (R2) of 0.75, and a standard error of calibration (SEC) of 1.21 °Brix. Modified partial least squares (MPLS) regression analysis yielded a calibration equation with R2 = 0.91, SEC = 0.69, and a standard error of cross validation (SECV) of 1.09 oBrix. For mango, MLR gave a calibration equation using d2 log 1/R at 904, 872, 1660 and 1516 nm with R2 = 0.90, and SEC = 0.85% DM and a bias of 0.39. Using MPLS analysis, a calibration equation with R2 = 0.98, SEC = 0.54 and SECV = 1.19 was obtained. We conclude that NIR technology offers the potential to assess fruit sweetness in intact whole pineapple and DM in mango fruit, respectively, to within 1° Brix and 1% DM, and could be used for the grading of fruit in fruit packing sheds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pen feeding study was carried out over 70 days to determine the effects of monensin (M) inclusion in two commercial supplements designed to provide different planes of nutrition to recently weaned steers. Thirty Bos indicus crossbred steers (191.4 +/- s.d. 7.1 kg) were individually fed a low quality pangola grass hay (57 g crude protein/kg DM; 497 g/kg DM digestibility) ad libitum (Control) with either a urea/molasses-based supplement of Rumevite Maxi-graze 60 Block (B), fed at 100 g/day, or grain-based Rumevite Weaner Pellets (WP), fed at 7.5 g/kg liveweight (W).day, both with and without M, viz. B, B+M, WP and WP+M, respectively. There were no significant interactions between supplement type and M inclusion for any measurement. Growth rates (main effects) averaged 0.17, 0.35 and 0.58 kg/day for the Control, B and WP supplements, respectively, with all means different (P < 0.05), while the response (P < 0.05) to M across supplement type was 0.11 kg/day. Hay DM intake was similar for the Control and B treatments (18.6 and 19.6 g/kg W.day) but was reduced (P < 0.05) with the WP supplement (16.8 g/kg W.day) while corresponding total DM intakes increased from 18.6 to 20.0 to 23.5 g/kg W.day (all differences P < 0.05), respectively. Monensin inclusion in the supplements did not affect supplement, hay or total DM intake. Inclusion of of M in supplements for grazing weaners in northern Australia may increase survival rates although the effect of M with cattle at liveweight maintenance or below requires further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate N2O and CH4 emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m(2) head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO3-, total N, NH4+, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen N2O emissions were 0.428 kg ha(-1) d(-1) (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha(-1) d(-1) (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH4 emission was 0.236 kg ha(-1) d(-1) (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha(-1) d(-1) (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between N2O emission and masses or concentrations of NO3- or total N in the manure. This is significant because many standard inventory calculation protocols predict N2O emissions using the mass of N excreted by the animal.